Blogs

Blogs

Rethink 2021: Reimagining the Art of the Possible

“We are in the midst of great change,” declared David R. Brousell, Co-Founder, Vice President, and Executive Director of the Manufacturing Leadership Council (MLC) in his opening speech at the MLC’s 2021 Virtual Rethink Summit today.

“It requires us all to reimagine the art of the possible – to expand our visions, to adapt, to devise new strategies, and to orchestrate change,” he said. “How well you transition to the digital model of doing business will be key to the competitive posture of your company and, as a result, our industry as a whole.”

Reflecting on the massive global disruption of the past year, Brousell noted that the COVID-19 pandemic’s impact on manufacturing has not only been profound but, in many areas of activity, has also led to permanent changes.

“Who could have imagined that as a direct result of a worldwide pandemic, Manufacturing 4.0 would suddenly arrive at an inflection point in its history,” he added. “Spurred by the crisis and the consequent need for greater flexibility and agility, manufacturing companies began accelerating their investments in digital technologies and the changes necessary to fully exploit them.”

Brousell cited the latest MLC survey research which confirms that 54.8% of manufacturing companies believe COVID-19 has increased management’s focus on digital transformation. Powerful majorities also report that many of the COVID-driven changes will now become permanent elements of their leadership approach. For example, 68.2% say that new disaster preparedness plans, resiliency strategies, and response teams will become permanent features in their companies. Likewise, 57.3% say that more collaborative, cross-functional organizational structures will take root. And 62.2% expect remote working by both leadership teams and employees to continue to be part of everyday life.

“More and more,” he predicted, “the digital model of doing business will sweep through other functions of the manufacturing enterprise – sales, marketing, HR, service. With manufacturing operations leading the way, the rest of the manufacturing enterprise will digitize.”

“So, open your minds over the next three days of Rethink and imagine a better future for manufacturing,” Brousell advised the hundreds of Rethink Summit virtual attendees. “Now is the time to think big about manufacturing.”

Blogs

At Schneider, ‘Small Steps’ Led to a Lighthouse

Schneider Electric’s Lexington, KY, plant is one of only a handful of manufacturing facilities in the U.S. that enjoys the coveted status of being a World Economic Forum-designated “Lighthouse” factory. To achieve that distinction, the Lexington plant, built in 1957, had to address some very basic operational issues.

In a presentation yesterday at Rethink, the Manufacturing Leadership Council Summit conference, Kenneth Labhart, North America Innovation Leader at Schneider, said that one of the issues that had to be addressed was the plant’s inability to share data from the plant floor that could be used to improve operational performance.

By adopting M4.0 technologies and approaches, including IoT, cloud, mobility, and analytics, the Lexington team focused on transforming the facility’s connectivity and integration platforms to break down silos and allow its teams to share data more easily. Those transformation projects have already resulted in a 26% reduction in energy spend, mean-time-to-repair reductions of 20%, the elimination of paper processes, and a five percent reduction in downtime.

The initiative was part of a smart factory program that began in 2017. Today, 80 Schneider factories have deployed a digital transformation roadmap.

But Labhart was clear that the company’s digital transformation had its challenges, chief among which were employee pushback, executive leadership buy-in, and expertise in digital technologies.

Schneider was able to overcome these challenges using a careful approach. “It is very important to take small steps,” Labhart said.

Blogs

Rethink 2021: Learnings from Next Generation Manufacturing Leaders

What draws the next generation of leaders to a career in manufacturing?

Next-Generation Leadership PanelWhile the specifics may vary from person to person, it’s the challenge, and the satisfaction, of seeing a product through from design to being in the hands of satisfied customers in the best, fastest way possible while continuously learning all along the way, according to members of the Next-Generation Panel session at the MLC’s 2021 Rethink Summit this week.

The three 2021 Manufacturing Leadership Award Winners on the panel — Kat Duggan, Coatings Business Learning Leader at Dow; Kasia Karimee Garcia Bracho, Supply Chain Lead at IBM; and Katia Valenzuela, Communications and Design Association, MxD — had so much enthusiasm for their chosen career path that the audience at the virtual event couldn’t help but cheer them on.

Duggan said her experience so far has “really been a joy,” while Valenzuela added, “It’s such a wonderful, innovative world…it was like [I discovered] a treasure trove of opportunities I didn’t even know existed within manufacturing.”

To thrive in that continuously innovating world as it moves into the future, next generation leaders will need some hard and soft skills that perhaps their predecessors did not, such as how to quickly analyze data to make critical decisions, let go of past traditions, and have the flexibility to be open to new ideas, new tools, new technologies, and the new M4.0 culture. Future leaders, they said, must be open and empathetic, able to listen and contribute back to their communities, and able to collaborate with all the people on their teams.

To attract the next generation of leaders, manufacturers also need to ensure that their workforce, especially at the upper echelons, are diverse. As Valenzuela said, “It’s very important to see people who look and act and think like you do in positions of leadership, not just because they bring their own diverse set of perspectives, experiences, and knowledge, but also because they can give someone like me a role model to look up to.”

Bracho also emphasized the importance of fostering a culture where everyone feels welcomed and respected. “Let’s be active and proactive” when it comes to hiring from the outside and promoting from within, added Duggan.

Sustainability is also important to the next generation, they added. New technologies such as blockchain can increase transparency and trust in a company’s ability to maintain standards at every stage of manufacturing. While local or global regulation may drive some sustainability efforts, consistent consumer pressure is ultimately what’s going to change business attitudes and how money is spent.

Bracho cited an IBM survey of more than 414,000 people in nine countries that found environmental responsibility to be a key factor for consumers. “The trend toward sustainability is growing, and it’s something that companies should focus on,” she said.

As to what we’ve learned from the pandemic? Digital is going to be the biggest winner for manufacturing, they said. And with that increasing focus on digital technology comes adaptability, flexibility, a culture of continuous improvement, and the need for an increased focus on cybersecurity.

Blogs

Rethink 2021: Accelerating M4.0 with Intelligent Platforms

Hitachi Panel Rethink 2021Manufacturers are generating more data, faster, and from more aspects of their operations than ever before. The key to harnessing all that data to produce higher quality products more quickly and efficiently, and to speed up the decision-making process, is having an intelligent platform and good data governance strategies, agreed Sid Verma, General Manager of the Manufacturing/IIoT Division at Hitachi Vantara, and Mike Lashbrook, Vice President of the Esys Division and Digital Solutions at robotics automation company, JR Automation, during an Executive Dialogue at the MLC’s Rethink 2021 Summit this week.

An M4.0-ready intelligent platform should have several key components, they said. It must enable operators to understand the data being generated and present it in a form that enables users to create analytics or decision models. It must also be able to provide intelligent output based on those models.

To make the system work enterprise-wide, it must also be able to talk to both the OT and enterprise sides, said Verma. And it must be scalable, fault-tolerant so it can self-correct, and the user interface must be consistent with the way people naturally work and think. It  should also be flexible and easy to maintain.

This all sounds good, but how does it work for manufacturers who are still in the process of automating their legacy systems? The increasing need to improve data quality across all the key performance indicators is driving the push toward intelligent platforms, said Lashbrook. “We have an enormous amount of data and intelligence being collected from connected equipment and smart sensors…the system needs to be able to ensure that, if there are small changes in the system, you can adapt on the fly and still get good quality.”

The future, he added, will be a completely integrated digital twin system that can quickly enable the operator to come up with the production model they need to move forward without disrupting the system.

There are challenges to scaling these platforms to where they need to be to achieve a full M4.0 operation, they acknowledged. “It’s a journey for us as a platform company to learn and adjust to be able to provide that value that the OT world needs,” said Verma. IT companies like Google make it look easy, because everything was IT-enabled and the protocols are clean. When you get to the OT side, however, it gets more complicated, depending on the age of the assets and the volume of data involved. While internet companies can just collect all that data and scale it, it gets too costly and difficult to follow their example on the plant floor.

The main challenge is the explosion of data being generated, which session moderator, MLC Co-Founder, Vice President, and Executive Director David R. Brousell called “the 400-pound gorilla in the room.” According to MLC survey data, manufacturers expect up to a 500% increase in data volumes over the next two years as they become more connected.

“Just collecting data on the OT side does not work for us” in the same way it works for a Google, said Verma. “We have seen horror stories where people spent their entire IT budget just collecting data because they didn’t know where to start.”

“Step one has to be stepping back and working with the operational focus. What are those KPIs whose operational efficiencies you want to improve? Then we have to make sure that we collect data around those, not just collect everything,” Lashbrook said. The approach is to focus on the value you’re hoping to create, then collect data associated with that value and figure out which aspects of the legacy systems need adjusting. “In the future, we can look at creating connected systems from day one. But for now, we have to work through these challenges.”

Verma agreed that companies should work upfront to develop a business priority, and a business use case that has an associated ROI, then bring in the engineering expertise. “If you are looking for predictive maintenance, let’s target the most critical failure that can happen. Then let’s try to collect the data to address just that particular failure mode. That way we limit the cost of the solution and the value goes back to the business.”

Many companies don’t have data scientists on staff to help analyze the data, but that shouldn’t stop them, said Verma and Lashbrook. “The first phase of deployment for industry 4.0 is to get that expert knowledge from people in quality and maintenance using older systems and automate that information,” said Verma.

For example, if a technician hears a noise when a motor fails, put in an acoustic sensor that can be alerted when the tech hears that noise. Once your models start showing more accuracy, then companies can begin to layer in data science on the areas that are most business-critical. “That has been our recipe for giving incremental value and industry 4.0 at a much lower cost profile,” he said.

Lashbrook added that, if you don’t have the expertise in house, bring in partners that can fill the gaps. For longer term solutions, look to hire people who have the new skillsets you will need.

Blogs

Rethink 2021: Enabling Evolution of the Frontline with AR

“Augmented Reality is definitely cool, it’s relatively easy to use, and it can have a big impact on productivity and quality,” argued Jim Heppelmann, Chief Executive Officer of PTC in an exclusive Executive Dialogue session during the Manufacturing Leadership Council’s 2021 Rethink Summit this week.

Speaking with MLC Co-Founder David R. Brousell, Heppelmann noted that most people have tended to think of digital benefits as always going to knowledge workers, or as part of connected machines and automation. The people who have not really benefited from digital transformation so far, are the frontline workers who stand and work next to those machines.

What Augmented Reality (AR) can do, he added, is to bring digital information directly into that work environment so that front-line workers can easily access and visually perceive information as they are actually doing their job.

It’s a technology that allows “bits and bytes to become sounds and sights”, explained Heppelmann.

Lots of companies have already seen the benefits of AR during the pandemic, he added, citing the example of auto company workers around the world who were able to be rapidly and remotely trained to make ventilators – a vital product which they had never made before.

Those kinds of primary use cases, involving work instructions, or training and mentoring, or remote support, are where many companies are already getting value. And Heppelmann believes there’s still lots of room for improvement. Despite all the digital investments manufacturers have made so far, he estimates that around 50% of front-line work is still not automated.

What’s more, he says that for every knowledge worker in a manufacturing organization there are around three front line workers on the plant floor or in customer facing and service roles. That’s where much of the skills gap exists in the industry today. And as experienced people continue to retire, they will continue take a lot of their domain knowledge with them, so the skills gap is likely to get even worse.

That’s why trying to digitize the knowledge of those retiring workers is also often a primary use case of AR. As companies use it, they are accumulating a large set of digital expertise that can help new workers learn their trade. And by harnessing AI and analytics with AR systems, companies can also ensure every step in a production or other process has been taken correctly and so verify the quality of the work. Over time, that helps all front-line employees to become more productive and more efficient.

“That’s why I call it a revolution,” he concluded. “We are bringing the power of the digital cloud to the front-line workforce for the first time. And that’s a big, powerful idea.”

Blogs

Rethink 2021: Advanced manufacturing role models from the WEF Lighthouse Network

Since its founding in 2018, the World Economic Forum’s Lighthouse Factory Network has served as a collection of role models for what is possible in advanced manufacturing. With 69 Lighthouse locations designated worldwide, the factories that have earned this distinction are at the forefront of digital transformation and have achieved significant financial and operational improvement as the result of their efforts.

During his session at Rethink: The Manufacturing Leadership Council Summit, Francisco Betti, Head of Advanced Manufacturing and Production at the World Economic Forum, said that when developing its Lighthouse Network, the WEF saw that there was momentum around digital transformation in manufacturing, but that companies were struggling to invest in shop floor use cases that could generate value. Using independent third-party evaluators, the WEF developed a process to identify companies that had overcome that challenge and achieved significant financial and operational improvement as a result of their efforts.

When asked about the common thread for members of the Lighthouse network, Betti pointed to four main elements:

  • The realization that digital transformation is not just to help improve operations, but also to enable new business models.
  • Some things that became important during the pandemic will be here to stay – agility and a focus on the customer; a balance between automation and employee engagement; a new concept of resilience.
  • Sustainability does not come at the expense of efficiency, and there are new ways to reuse, recycle and re-manufacture – and these will become essential for companies to stay in business.
  • C-level management and corporate boards have made digital transformation a significant priority, and they invest in technology and the workforce accordingly.

In the future Betti says the WEF will pay special attention to companies that take their digital transformation beyond the shop floor and move it out to other functions, such as procurement, customer service, and for meeting substantial benchmarks for sustainability.

More information about the Global Lighthouse Network is available from the WEF’s white paper, Global Lighthouse Network: Insights from the Forefront of the Fourth Industrial Revolution.

Blogs

Rethink 2021: Inspired by Nature – Redefining the Human-Machine Relationship with AI & Robotics

“The next 60 years will usher in an era where robots will become useful team-mates for people, helping them in both physical and cognitive tasks,” predicted the MIT’s Dr. Daniela Rus during her keynote session on the final day of the MLC’s 2021 Rethink Summit this week. “They will have a wide range of capabilities and will come in a variety of forms and materials, inspired by nature, by our built environment, and by our imagination.”

Rus, who is Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science, and Director of the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT, continued: “Today we are surrounded by a world of digital opportunities. These possibilities only get larger when we start to imagine what we can do with advances in AI & robotics.”

Those advances will not only fundamentally transform the human/machine relationship, she believes, but will also lead to completely new kinds of production strategies and manufacturing business models.

“We assume that robots and AI will lead to fewer manufacturing jobs,” noted Rus, “but what if they really bring better jobs that allow workers to control production lines more finely and configure them rapidly for customized production? This could meet the rising demand for customization and personalization in almost everything we buy, and at an affordable price point. It would be a world where product templates get designed by specialists, customized by people at home, and fabricated locally. This means a whole new approach to production and jobs.”

Looking back, Rus identified three waves of robotics development so far: a first wave of large, constrained, and potentially dangerous industrial robots; a second wave of more flexible and autonomous robotics systems; and the current wave of automation where we are “building machines that can perform increasingly more complex physical and cognitive tasks in human-centred environments.”

This progress is being enabled by advancements in three interconnected fields, she noted, robotics, AI, and machine learning. She also acknowledged that there are tasks that people do better, and tasks where machines are better at the job. “The sweet spot today”, she said, “is to consider teams of humans and machines working together – to view machines as “Super-tools”, or as autonomous interns running errands or pouring over data for humans to act on.“

But while the last 60 years has been marked by robots mostly inspired by the human form, the next stage, Rus believes, will be more adaptive soft robots inspired by the animal kingdom and form diversity, by our built environment, and with far broader application potential. The future of AI-enabled robotics, she says, “will be inspired by nature – with machines becoming soft like materials, and materials becoming more intelligent like machines.”

To support her point, Rus showcased multiple examples of innovative lab prototypes based on computational design and leading-edge fabrication ideas already under development, from under-water robotic fish for sub-aqua applications, to origami-inspired grippers, to micro-bots that can choose different wraps depending on the tasks they need to perform, to robots that can interpret and mirror human muscle movements, to robots that harness deep learning systems to interact with human language and even respond to some instructions via human brainwaves.

“These are a good starting point for reimagining robots for production,” she added. “Imagine a world where if you can think it, you can make it. A world where anybody can create custom tools, custom robots, and custom products – on demand.”

So, as companies continue to embrace the use of autonomy and automation in manufacturing, Rus believes they need to be prepared for a constantly evolving manufacturing landscape in the years ahead that incorporates AI, robotics, and machine learning tools, and they should strive to better understand how these tools can impact all the processes in the factory, how to take advantage of those processes, and how to use computation and data in order to improve operations.

This, she stressed, requires developing both the right infrastructure and a workforce that is re-skilled to understand how to use the new tools, “because human/machine collaboration requires both better machines and humans who know how to leverage those machines.”

And companies need to start that process now. “It is not enough just to train the workforce of tomorrow,” Rus concluded. “We need to get serious about reskilling the workforce of today and cultivate a culture of agility and lifelong learning in every organization.”

Blogs

Rethink 2021: A Better World for Tomorrow

“Manufacturers do not accept that anything is impossible.”

In his opening speech for Rethink: The Manufacturing Leadership Summit, National Association of Manufacturers President and CEO Jay Timmons reflected on the world’s emergence from the COVID-19 pandemic and how digital technologies played a role in keeping factories open, keeping goods moving, and especially in keeping workers safe.

Timmons cited MLC research that “the march to Manufacturing 4.0 has become a sprint” as 40% of companies reported that the pandemic accelerated their digitization plans. Indeed, manufacturers who had robust digital operations in place were shown to be in a better position to respond to the pandemic’s disruption, and others quickly got on board with bringing in collaborative and remote operational technologies to keep production lines running.

In examining specific transformational examples, Timmons pointed to 2021 Manufacturers of the Year Dow and Hologic. Dow’s digital transformation throughout its operations eliminated 2 million hours of work in potentially hazardous environments and allowed for significant year-over-year gains in value, even during the pandemic. Meanwhile, Hologic introduced a talent management system that prepares its employees to work in factories of the future and halved the time necessary to bring new employees through the onboarding process.

In closing, Timmons hearkened to manufacturers’ unflappable determination and continuous quest for improvement despite any challenges along the way.

“We can build the world we want to see, and today, manufacturers are determined to see us through our crisis and build a better world for tomorrow.”

Blogs

Rethink 2021: Shell utilizes AI to power the future

 

When it comes to making a digital transition and realizing ambitious business outcomes, Shell believes that technology might be the least important element.

During his session at Rethink: The Manufacturing Leadership Council Summit, Peter Westerink, General Manager of Digitalization Downstream Manufacturing at Shell, said that the energy company believes transformation is driven 60% by data, 30% by people, and 10% by technology.

Shell has significantly increased its investment in digital adoption, including growth to 1.3 trillion rows of sensor data in its data link, significant growth in its data-focused workforce, a tenfold increase in the use of virtual rooms powered by AR, and the use of AI to monitor more than 6,000 pieces of equipment.

Digitalization and AI are driving efficiencies in Shell’s business by maximizing availability for equipment (“find small and fix small”) and optimizing production in real time while decreasing CO2 emissions. Shell integrates data into a digital twin to enhance collaboration, automation, and remote operations that has gone live in one production facility with plans underway for five others.

Shell is also using these efforts to grow its clean energy capabilities. This includes AI for optimizing electric vehicle charging stations to save money for customers and monitor the power grid. Additionally, the company is using data-driven modeling and physics-based models for hydrogen production, storage, and transport, and using AI to assist in selecting wind turbine locations and optimize windfarm design and construction.

Westerink says Shell is thinking bigger to make energy smarter and sees a brighter future ahead. “We’re excited by the capabilities and communities we’re building, excited by the impact our projects are already having, and excited by the potential we haven’t yet realized.”

Three Steps Toward Manufacturing Resiliency

Three Steps Toward Manufacturing Resiliency

The manufacturing business environment can be unpredictable. Supply chain disruptions occur, demand for products fluctuates, and game-changing innovations quickly appear on the horizon. To stay in business and remain competitive, manufacturers must anticipate and respond to both foreseen and unforeseen changes.
What’s the key to this responsiveness? Manufacturing resiliency. And the driver behind this resiliency is data-driven production execution supported by digital technologies.
Hard Lessons
Hard lessons have been learned in the wake of the novel coronavirus pandemic. Manufacturing has been particularly hard hit. Companies that were able to react quickly, retool their factories, redirect their supply chains, and take advantage of digital technologies quickly switched gears to meet crucial needs and create new opportunities

For example, clothing designers and manufacturers such as H&M, Brooks Brothers, and Hanesbrands retooled their factories to produce face masks, medical gowns, and protective aprons for hospitals. Spirits manufacturers Bacardi and Brown-Forman shifted their distillery operations to manufacture hand sanitizers for first responders. And production lines at Fiat Chrysler Automobiles, Ford, and GM are now turning out ventilator parts, respirators, and other much-needed medical equipment.[i] In addition to meeting urgent worldwide needs, these companies have created a culture of resiliency in their operations that will be valuable to them and the communities they support in both the short and long term.
Three Steps to Resilient Manufacturing 
By taking the following three steps, you can transform your manufacturing environment to become more resilient and improve operations. You can more effectively meet the needs of your customers under any circumstances while creating new opportunities for your business.
1/ Increase flexible automation to create resilient operations.
The manufacturing industry has come full circle, from the days of hyper-customized craft production before the first Industrial Age, through mass production in the early 1900s, to manufacturing as it is today. With the trend toward personalization that we’re now seeing in the marketplace, the manufacturing industry is moving back to hyper-customization, or a lot size of one.
However, in this Industry 4.0 iteration, hyper-personalization is being done at scale. Flexible automation is at the forefront of this evolving story. Robotics and artificial intelligence (AI) are the key technologies that make flexible automation at scale possible, enabled by 5G, Time-Sensitive Networking (TSN) and Open Platform Communications (OPC).

On the road to full automation, we can also expect to see more scenarios where humans work collaboratively with robots. This collaboration could take many forms. For example, workers could adapt their tasks to preconfigured robotic operations. However, with rapid advancements in robotics and AI, future production lines could also be staffed with robots that have the intelligence and situational awareness to easily work alongside humans, adjusting their behavior according to each worker’s style and speed.
The technologies that will drive this digital transformation include robotics and mixed reality, with 5G, IoT and AI serving as the digital backbone and application enablers.
2/ Introduce remote operations to ensure business continuity in adverse situations. 
Prior to the pandemic, there was a lot of industry buzz and some solid proof points for deploying augmented reality (AR) and virtual reality (VR) in manufacturing, particularly within the maintenance function. However, not everyone believed this technology would be quickly and widely adopted.
Now, as companies have been forced into embracing remote working, we’re seeing a renewed enthusiasm among executives for these technologies. There’s a heightened urgency to incorporate remote operations as an integral means of supporting manufacturing operations, whether for product quality inspection, equipment maintenance tasks, or even collaborative tasks involving product design and production planning.
Technologies that can be seamlessly integrated into work environments will quickly evolve to include key enablers such as digital twins, 3D visualization, and private 5G.
3/ Adopt a digital infrastructure that connects all parts of the supply chain. 
One of the serious manufacturing-related impacts of the pandemic and subsequent shutdowns was the significant disruption to the supply chain. Many enterprises were scrambling to source needed materials and components, and distributors were scrambling to deliver them. This situation brought home how essential digital technologies are for managing the complexity and variability of today’s sophisticated and vulnerable manufacturing supply chains.
Industrial data lakes play a key role in transforming traditional production software stacks into digital production platforms. In the manufacturing environment, data lakes enable real-time connectivity to various information layers involved in manufacturing operations, from programmable logic controllers (PLCs), to manufacturing execution systems (MES), to enterprise resource planning (ERP) systems. This end-to-end connectivity will enable a seamless information flow across the entire supply chain. In addition, it will help scale any application deployed in one plant, to any other plant anywhere in the world, improving overall return on investment (ROI).
Together, with several other emerging technologies, industrial data lakes will eventually help shape the vision of distributed manufacturing and personalized manufacturing. Additionally, industrial data lakes will play a critical role in scaling digitized accumulated know-how as we transition toward the vision of the digital worker.
Lessons Learned 
Though the manufacturing industry doesn’t always operate in crisis mode, there are valuable lessons about resiliency to be learned from the pandemic. Any manufacturer can take these lessons to heart and transform their factory into an agile, responsive environment resilient enough to weather whatever changes may come.

[i] https://www.triplepundit.com/story/2020/companies-retooling-operations-covid-19/88921

View More